Geometry Modeling for Unstructured Mesh Adaptation

Michael Park, Bil Kleb, and William Jones NASA Langley Research Center Joshua Krakos and Todd Michal The Boeing Company Adrien Loseille INRIA Saclay-île-de-France Robert Haimes Massachusetts Institute of Technology John Dannenhoffer

Syracuse University

17 June 2019

Motivation

Technology roadmap of the CFD Vision 2030 Study^1

"Focused research programs in streamlined CAD access and interfacing, large-scale mesh generation, and automated optimal adaptive meshing techniques are required."

Supporting Certification by Analysis

- Demands the accurate simulation of steady and time-dependent separated flows for complex configurations (e.g., maximum lift of transport aircraft)
- Requires improved automation and robustness for complex geometry models and database creation (outside center of flight envelope where CFD typically applied)
- Includes verification and validation exercises for the entire adaptive mesh toolchain

¹Slotnick et al. NASA CR-2014-218178

Motivation

Methodology

- Summarize common intended and unintended artifacts of geometry models
- Present approaches to accept or mitigate these artifacts
- Two independent implementations of metric-based unstructured mesh adaptation
- Evaluate integrated mesh adaptation process performance on AIAA workshop geometries
 - Realistic level of designer intended artifacts
 - Contain typical unintended construction artifacts

Integrated Mesh Adaptation Process

Metric-Based Unstructured Mesh Adaptation

Metric field

- Describes a request of mesh density, stretching, and orientation
- Constructed to control interpolation or output error

Continuous metric field rendered as ellipses and unit mesh

Controls interpolation error in a scalar field

- Hessian reconstructed from solution
- Local scaling² to control interpolation error L^P-norm of smooth and nonsmooth features simultaneously
- ► Classical Hessian methods (no local scaling) control the L[∞]-norm (nonsmooth features only)

²Loseille, Dervieux, Frey, and Alauzet, AIAA-2007-4186

Mesh Mechanics

Unstructured grid

- Simplicies (triangles and tetrahedra)
- Conforming to a geometry model Boundary REPresentation (BREP)
- Parallel execution after initial grid generation

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

Intended Geometry Model Complexity

Small features, close proximity between bodies, and many features (e.g., JAXA Standard Model (JSM) with nacelle)

Unintended Geometry Model Artifacts

These issues are pervasive^{3,4,5}

inadequate tolerances, discontinuous parameterization, degeneracy, periodicity, small edges, sliver faces, narrow faces, excessive detail, or inconvenient topology

Mitigation approaches presented here assume model import is possible!

small gaps, missing faces, duplicate surfaces, overlapping surfaces, self-intersecting surfaces, inaccurate p-curves, incorrect edge orientation, cusps, intersecting edges, or voids

³Chawner, "Survey Results – Mesh Generation and CAD Interoperability," Another Fine Mesh Pointwise Blog 13-JUN-2018

⁴Taylor, "Analysis of Participant Questionnaires submitted to the 1st AIAA Geometry and Mesh Generation Workshop," AIAA Paper 2018–129

⁵Gammon, Bucklow, and Fairey, "A Review of Common Geometry Issues Affecting Mesh Generation," AIAA Paper 2018–1402

Mitigation Strategies

In paper, not covered in detail here

- Virtual topology or quilting for more convenient topology
- Higher order surrogate surfaces for direct evaluation or to support evaluation of an underlying geometry model
- Parametric degeneracy and periodicity support

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

Geometric constraints

Purpose

- Ensure that the metric spacing request is compatible with the geometry
- Augments the solution-based metric via intersection
- Satisfied on the initial mesh and active throughout the adaptive sequence until the solution-based metric size request becomes smaller than the constraint
- Increase likelihood of future mesh operation success with the potential side effect of increase cost

Geometry-based metric

- Feature size (length of short edge, width of narrow face)
- Curvature of edges and surfaces

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

Integrated Mesh Adaptation Processes

Toolset used at Boeing

- MADCAP (Modular Aerodynamic Design Computational Analysis Process)
- EPIC (Edge Primitive Insertion and Collapse)
- GGNS (General Geometry Navier-Stokes)

Toolset used at NASA

- OpenCSM and EGADS in ESP (Engineering Sketch Pad)
- refine
- TetGen or AFLR (Advancing-Front/Local-Reconnection)
- FUN3D-FV (Fully-Unstructured Navier-Stokes 3D Finite Volume)

Initial mesh

Initial mesh process

- Coarse surface mesh via EGADS tessellation or MADCAP
- Surface mesh adapted to geometry metric
- Volume filled with isotropic TetGen or AFLR mesh
- Volume mesh adapted to geometry metric

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

Initial geometry adapted surface

MADCAP+EPIC

EGADS+refine

Adapted at 10.47 angle of attack, 0.172 Mach, 1.93M Re_{MAC} MADCAP+EPIC (7.4M)

EGADS+refine (4.5M)

Adapted with GGNS+EPIC (7.4M)

Adapted with FUN3D-FV+refine (4.5M)

Adapted at 10.47 angle of attack, 0.172 Mach, 1.93M ${\rm Re}_{\rm MAC}$

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

C25D Flowthrough Nacelle (C25F) Initial geometry adapted surface

C25D Flowthrough Nacelle (C25F)

Initial geometry adapted surface

MADCAP+EPIC

$\mathsf{EGADS+refine}$

C25D Flowthrough Nacelle (C25F)

Adapted at 1.6 Mach, inviscid

MADCAP+EPIC (22M)

Outline

Motivation and Introduction

Intended and Unintended Geometry Model Artifacts

Geometric Metric Constraints

Integrated Mesh Adaptation Processes

JAXA Standard Model (JSM)

C25D Flowthrough Nacelle (C25F)

Conclusions and Future Work

Conclusions

Integrated mesh adaptation processes

- Unstructured to the wall, valid, and boundary conforming to geometry model
- Minimal modification to input geometry
- Includes initial mesh generation
- Intended (and unintended) geometry features resolved at increased cost

Conclusions

Needed investments

- Importing geometry still a bottleneck (this work assumes the model can be imported)
- Some classes of geometry "repair" eliminated by this work, but all manual interaction must be eliminated for automation
- Synergy between flow solver and adapted meshes key to decreasing wall-clock time, e.g., "strong solver," "grid suitability"
- Error estimation for steady and unsteady viscous flows

Outreach and Acknowledgment

Unstructured Grid Adaptation Working Group (UGAWG)

- Informal group with monthly virtual meetings
- https://UGAWG.GitHub.io
- Test cases available for analysis or developing new methods
- UGAWG@Mail.EmailHorse.com or Mike.Park@NASA.gov
- Diffuse verified adaptive mesh technology to displace fixed meshes where appropriate

Acknowledgment

This work was partially supported by the Transformational Tools and Technologies (TTT) Project of the NASA Transformative Aeronautics Concepts Program (TACP)

Related Work

AIAA Paper 2015-2292

Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

- 2D and 3D output-based and analytic-metric adaptation for planar geometries
- Descriptive statistics and output convergence to quantify performance

AIAA Paper 2016-3323

Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

- Literature survey
- Unstructured grid adaptation status and 15 year forecast
- Recommendations for investment and potential impacts

Related Work

International Meshing Roundtable 2017

First benchmark of the Unstructured Grid Adaptation Working Group

- 3D analytic-metric adaptation for a planar geometry and simple curved surface geometry model
- Creation of a benchmark repository and website

AIAA Paper 2018-1103

Unstructured Grid Adaptation and Solver Technology for Turbulent Flows

- Descriptive statistics of adapted grid metric conformity
- 3D interpolation error and output-based metrics for Hemisphere Cylinder and ONERA M6
- Test cases and results included in benchmark repository and website

Related Work

AIAA AVIATION Paper

Sketch-to-Solution: An Exploration of Viscous CFD with Automatic Grids

Apply unstructured grid adaptation to a wide range of problems with comparison to verification and validation data

AIAA AVIATION Paper

Geometry Modeling for Unstructured Mesh Adaptation

- Mechanical Computer-Aided Design (MCAD) integration
- Adaptation that accommodates typical intended and unintended MCAD construction issues