Verification of Unstructured Grid Adaptation Components

Michael Park, Aravind Balan, and W. Kyle Anderson NASA Langley Research Center

Marshall C. Galbraith, Philip C. Caplan, and Hugh A. Carson Massachusetts Institute of Technology

Dmitry Kamenetskiy, Joshua Krakos, and Todd Michal The Boeing Company

Adrien Loseille, Frédéric Alauzet, and Loïc Frazza INRIA Saclay-île-de-France

> Nicolas Barral Imperial College London

Motivation

Supporting Certification by Analysis

- Demands the accurate simulation of steady and time-dependent separated flows for complex configurations
- Requires improved automation and robustness for complex geometry models and database creation
- Includes verification and validation exercises for the entire adaptive grid tool chain

Finding 3 of the CFD Vision 2030 Study¹

Mesh generation and adaptivity continue to be significant bottlenecks in the CFD [Computational Fluid Dynamics] workflow, and very little government investment has been targeted in these areas.

¹Slotnick et al. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences NASA CR-2014-218178

Inspiration

Turbulence Modeling Resource (TMR)

Resource for CFD developers to:

- Obtain accurate and up-to-date turbulence models, and
- Verify model implementation.

Public website https://turbmodels.larc.nasa.gov provides:

- References, equations, and clarifications for each model
- Fixed grids and CFD results for verification (of model implementation)
- Experimental measurements for validation (of model to reality)

Goal: create an equivalent data set for unstructured grid adaptation

Unstructured Grid Adaptation Working Group

Public website https://UGAWG.GitHub.io

- Verification benchmark test cases
- Encourage detailed implementation discussion between researchers
- Encourage new entrants into adaptive grid research

AIAA Paper 2015-2292

2D and 3D output-based and analytic-metric adaptation

AIAA Paper 2016-3323

Recommendations for CFD Vision 2030 investment and potential impacts

International Meshing Roundtable 2017

First benchmark of the Unstructured Grid Adaptation Working Group

AIAA Paper 2018-1103

Test cases and results included in benchmark repository and website

Mike.Park (@NASA.gov)

UGAWG Component Verification

Today

AIAA Paper 2019-1995

Kingston Peak, 3:30pm

Parallel Anisotropic Unstructured Grid Adaptation

- Strong and weak grid adaptation scaling studies to specified metrics
- Equivalent metric conformity independent of core count (not identical to sequential execution)

Today's Talk: AIAA SciTech 2019

Verification of Unstructured Grid Adaptation Component

- Interchange individual components of the grid adaptation process
- Design-order grid adaptation to analytic fields:
 - scalar L²-approximations
 - scalar advection-diffusion PDE
- Code-to-code comparison:
 - laminar delta wing
 - turbulent ONERA M6

Outline

- 2 Verification with Scalar Fields
- Integrated Grid Adaptation Processes: Laminar Delta Wing
- Integrated Grid Adaptation Processes: ONERA M6
- **5** Conclusions and Future Work

Outline

- 2 Verification with Scalar Fields
- 3 Integrated Grid Adaptation Processes: Laminar Delta Wing
- Integrated Grid Adaptation Processes: ONERA M6
- 5 Conclusions and Future Work

Integrated Grid Adaptation Process

Metric-Based Unstructured Grid Adaptation

Metric Field

- Describes a request of grid density, stretching, and orientation
- Constructed to control interpolation or output error

Metric Field Rendered as Ellipses and Unit Grid

Flow Solvers

GGNS - Boeing Company

• Streamline Upwind Petrov-Galerkin (SUPG) finite-element method

Wolf - INRIA

• Unstructured MUSCL (UMUSCL) finite-volume method

FUN3D - NASA

- FUN3D-FV: Upwind finite-volume method
- FUN3D-SFE: Stabilized continuous finite-element method

Firedrake - Imperial College London

• Streamline Upwind Petrov-Galerkin (SUPG) finite-element method

SANS - Massachusetts Institute of Technology

- Continuous and Discontinuous finite-element method
- Dual Weighted Residual (DWR) error estimate

Metric Construction Methods

Multiscale

L²-projection Hessian reconstruction (Mach number)
 Wolf

Boundary Hessian extrapolated from interior

refine

Boundary Hessian extrapolated from interior

Firedrake

No boundary Hessian treatment

- k-exact Hessian reconstruction (Mach number)
 - GGNS
 - refine

MOESS - Mesh Optimization via Error Sampling and Synthesis

- Optimal step matrix to minimize error estimate
 SANS
- Works with High-Order methods

Grid Adaptive Mechanics Methods

EPIC - Boeing Company

- EPIC-ICS: insertion, collapse, and swap
- EPIC-ICSM: insertion, collapse, swap, and node movement

FEFLO.A - INRIA

Cavity-based operator

refine - NASA

Insertion, collapse, and node movement

PRAgMaTic - Imperial College London

Insertion, collapse, swap, and node movement

avro - Massachusetts Institute of Technology

Cavity-based operator

Mike.Park (@NASA.gov)

Outline

Integrated Grid Adaptation Processes: Laminar Delta Wing

- Integrated Grid Adaptation Processes: ONERA M6
- 5 Conclusions and Future Work

Integrated Grid Adaptation Process: Scalar Field

Grid Adaptation Components: Scalar Field

sinfun3 Scalar Function and 128,000 Element Grid

sinfun3 Interpolation Error Convergence

tanh3 Scalar Function and 128,000 Element Grid

tanh3 Interpolation Error Convergence

Verification of Scalar Fields

Summary

- Majority of methods show expected convergence rate for sufficiently smooth problems
- Code-to-code comparisons to aid in identifying method deficiencies

In Paper

- sinatan3 field with curved shock feature and low amplitude background variation
- TripleBL scalar convection diffusion boundary layer model with corners
- Detailed appendix with complete set of results for each method

Outline

2 Verification with Scalar Fields

Integrated Grid Adaptation Processes: Laminar Delta Wing

- Integrated Grid Adaptation Processes: ONERA M6
- 5 Conclusions and Future Work

Laminar Delta Wing

Coarse Initial Grid without Boundary Layer Refinement

Test case with a strong leading edge vortex used in the first three International Workshops on High Order CFD Methods

Laminar Delta: Grid Adaptation Components

Laminar Delta: 0.3 Mach, 4K Re_{Root}, 12.5° AoA

Mike.Park (@NASA.gov)

Laminar Delta: 0.3 Mach, 4K Re_{Root}, 12.5° AoA

Laminar Delta: Summary

Summary

- For grids above 10M vertices
 - less than a half a drag count variation
 - less than 0.06% variation in lift coefficient
- Modeling Difference in SANS vs. FUN3D-SFE vs. GGNS?
 - SANS+EPIC p=2 converged with 512k DOF according to error estimate

In Paper

Lift Coefficient

Outline

- 2 Verification with Scalar Fields
- 3 Integrated Grid Adaptation Processes: Laminar Delta Wing

Integrated Grid Adaptation Processes: ONERA M6

5 Conclusions and Future Work

ONERA M6 Wing

Curvature resolving initial grid without boundary layer refinement

Mike.Park (@NASA.gov)

UGAWG Component Verification

ONERA M6: Grid Adaptation Components

ONERA M6: 0.84 Mach, 14.6M Re_{Root}, 3.06° AoA

Pressure Component of Drag Coefficient

Mike.Park (@NASA.gov)

ONERA M6: 0.84 Mach, 14.6M Re_{Root}, 3.06° AoA

Viscous Component of Drag Coefficient

Mike.Park (@NASA.gov)

ONERA M6: Summary

Summary

- Pressure and viscous drag coefficient components approach fine fixed-grid values
- Less than a two count drag count variation for adapted grids

In Paper

- GGNS+EPIC-ICSM output-adapted
- Wolf+FEFLO.A output-adapted
- Detailed appendix with complete set of results for each method

Conclusions

Verification of Grid Adaptation

- Design order (second and higher) demonstrated for sufficiently regular functions
- New adaptive grid mechanics implementation (avro)
- Detailed appendix in the paper to form the expected behavior of adaptive grid tools

Integrated Grid Adaptation Processes

- Unstructured to the wall, valid, and boundary conforming to geometry
- Improvements to all integrated grid adaptation implementations demonstrated since SciTech 2018

Outreach and Acknowledgment

Unstructured Grid Adaptation Working Group (UGAWG)

- Informal group with monthly virtual meetings
- https://UGAWG.GitHub.io
- Grids and test cases available for analysis or developing new methods
- UGAWG@Mail.EmailHorse.com or Mike.Park@NASA.gov

Acknowledgment

This work was partially supported by the Transformational Tools and Technologies (TTT) Project of the NASA Transformative Aeronautics Concepts Program (TACP)