Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

Mike Park NASA Langley Research Center

Adrien Loseille INRIA Paris-Rocquencourt

Joshua Krakos and Todd Michal The Boeing Company

Motivation

 Mesh generation and adaptivity continue to be significant bottlenecks in the CFD workflow, and very little government investment has been targeted in these areas.
 – CFD Vision 2030 Study (NASA-CR-2014-218178)

Approach

- Create and sustain collaboration in solution adaptive research with a goal of addressing the CFD Vision 2030 goals of automation, uncertainty quantification, and robustness
 - Leverage research groups across different organizations around the world

Output-Based Adaptation Process

• Use error estimation and grid adaptation to reduce the requirements on the initial grid

Output-Based Adaptation Process

- There are may elements involved and they need to be right for the entire procedure to converge
 - To ensure correctness, examine elements individually and as a whole

Output-Based Adaptation Process

- Today we will focus on grid adaptation mechanics for triangular and tetrahedral grids
 - In the context of specified spacing field and solution error estimation procedures

Metric

- Examine metric-based approaches to unstructured grid adaption
- Metric is a 3x3 (or 2x2 in 2D) matrix to define an orthogonal basis and spacing in each basis vector direction
 - Stored at each vertex in the mesh and interpolated as needed
- Edge lengths are computed in the metric
 An ideal grid has all unit-length edges in metric

3D Prescribed Metric Field

- Very simple metric field, but still illustrative
- Defined in a unit square
- X-spacing and Y-spacing is constant 0.1
- Z-spacing varies linearly from 0.1 at the top and bottom to 0.001 at the center of the square
- Introduction of the adaptive mechanics

refine/two

Edge-based algorithm using only insertion and collapse operators

EPIC-IC

Edge-based algorithm using only insertion and collapse operators

EPIC-ICS

Edge-based algorithm using insertion, collapse

and swap

EPIC-ICSM

Edge-based with insertion, collapse, swap, and node movement

refine/one

Edge-based with insertion, collapse, swap, and node movement

Edge length in metric

Feflo.a

Cavity-based with insertion, collapse, swap, and node movement

Laminar Delta Wing

- International Workshop on High-Order CFD Methods test case
 - Mach 0.3, 12.5° angle of attack, and 4000
 Reynolds number based on mean chord

Laminar Delta Wing

- International Workshop on High-Order CFD Methods (HIOCFD) test case
 - Mach 0.3, 12.5° angle of attack, and 4000
 Reynolds number based on mean chord
- Venditti metric with refine/one, refine/two, Feflo.a, and EPIC-ICS
- Multiple adaptations at series of increasing complexity (size request)

Laminar Delta Wing Drag

Cd_ref-Cd

0.1 24

EPIC-ICS Delta Wing Grid

2D Flat Plate

- Available on the Turbulence Modeling Resource (TMR) website
- Examined in a SciTech 2015 special session
- Not a production capability yet
 - Plagued by iterative convergence and Hessian reconstruction (error estimation) issues
 - Grid adaption mechanics are available for this case (1000-1 aspect ratio for solver robustness)

2D Flat Plate Drag Convergence

Tracking of CFL3D drag coincidental

2D Flat Plate Velocity Profile

Overlays structured grid result

2D Flat Plate Skin Friction

• Better resolves leading edge singularity

2D Flat Plate Skin Friction

• Slight noise in skin friction

2D Flat Plate Grid

• Initial grid is uniform and isotropic

2D Flat Plate Grid

• Anisotropic refinement near the plate

2D Flat Plate Z-Scaled Grid

• 1000-1 refinement appears isotropic

Summary

- Simple specified metric illustrates the properties of each adaptive mechanics tool

 Statistics in paper verify histogram observations
- Nominally second order adaptive finite volume scheme competitive with HIOCFD-2 results in terms of drag error per degree of freedom for multiple grid adaptation tools
 - Avenue for collaboration on solver technology, error estimation, and tetrahedral grid adaptation

Summary

- While not a routine capability, turbulent 2D flat plate shows promise
 - Hampered by solver robustness for under resolved flow features and high aspect ratio unstructured grids
 - Experimental solver technology and discretization improvements very helpful
 - Error estimation (Hessian reconstruction, particularly on boundaries) should be improved to produce smoother metric variation

In the Paper

- Compiled statistics to quantify edge length histograms
- 2D specified metric field
- Diamond airfoil Mach 2 drag adaptation
 - 2D triangles and 3D extruded to unit span tetrahedra
 - Comparison of Venditti and INRIA Optimal-Goal metrics
- Description of the error estimate procedures, Hessian reconstruction (boundary), and gradation control

Thank you!

- Turbulence Modeling Resource and High Order CFD Workshop websites invaluable
 - Big thank you to the people supporting these community resources

Future work

- SciTech 2016 paper and beyond (summarized in the paper)
 - Metric aligned grid elements
 - Curved boundaries and geometry access
 - Parallel execution
 - Error estimation
 - 2D and 3D RANS with turbulence modeling
 - Time-accurate simulation
- Engage researchers in a sustained effort and disseminate findings (paper, website, workshop)